Subtle Regulation of Potato Acid Invertase Activity by a Protein Complex of Invertase, Invertase Inhibitor, and SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE.

نویسندگان

  • Yuan Lin
  • Tengfei Liu
  • Jun Liu
  • Xun Liu
  • Yongbin Ou
  • Huiling Zhang
  • Meng Li
  • Uwe Sonnewald
  • Botao Song
  • Conghua Xie
چکیده

Slowing down cold-induced sweetening (CIS) of potato (Solanum tuberosum) tubers is of economic importance for the potato industry to ensure high-quality products. The conversion of sucrose to reducing sugars by the acid invertase StvacINV1 is thought to be critical for CIS. Identification of the specific StvacINV1 inhibitor StInvInh2B and the α- and β-subunits of the interacting protein SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE from the wild potato species Solanum berthaultii (SbSnRK1) has led to speculation that invertase activity may be regulated via a posttranslational mechanism that remains to be elucidated. Using bimolecular fluorescence complementation assays, this study confirmed the protein complex by pairwise interactions. In vitro kinase assays and protein phosphorylation analysis revealed that phosphorylation of SbSnRK1α is causal for StvacINV1 activity and that its active form blocks the inhibition of StInvInh2B by SbSnRK1β, whereas its inactive form restores the function of SbSnRK1β that prevents StInvInh2B from repressing StvacINV1. Overexpression of SbSnRK1α in CIS-sensitive potato confirmed that SbSnRK1α has significant effects on acid invertase-associated sucrose degradation. A higher level of SbSnRK1α expression was accompanied by elevated SbSnRK1α phosphorylation, reduced acid invertase activity, a higher sucrose-hexose ratio, and improved chip color. Our results lend new insights into a subtle regulatory mode of invertase activity and provide a novel approach for potato CIS improvement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro carbohydrate stress: salicylic acid increases soluble invertase activity in Pistacia vera L. in vitro plantlets. Françoise Bernard *, Majid Baghai and Shirin Hadad Kaveh

The action of salicylic acid (SA) has been well investigated in plant resistance against pathogen attacks but its role may be extended to a more global anti-stress plant cell strategy. The expression of defense-related functions may be also enhanced by elevated hexose levels. To verify if there exists a relation between these two defense programs, SA effect on soluble acid invertase (EC 3.2.1.2...

متن کامل

Interaction proteins of invertase and invertase inhibitor in cold-stored potato tubers suggested a protein complex underlying post-translational regulation of invertase.

The activity of vacuolar invertase (VI) is vital to potato cold-induced sweetening (CIS). A post-translational regulation of VI activity has been proposed which involves invertase inhibitor (VIH), but the mechanism for the interaction between VI and VIH has not been fully understood. To identify the potential partners of VI and VIH, two cDNA libraries were respectively constructed from CIS-resi...

متن کامل

Isolation and characterisation of invertase inhibitor from sweet potato storage roots

BACKGROUND: Plant invertases play important roles in sucrose metabolism. Cell wall invertase has been reported to participate in phloem loading and unloading. Soluble invertases are involved in hexose level regulation in mature tissues and in utilisation of stored sucrose within vacuoles. Invertase inhibitory proteins have been described as one of the possible components for invertase activity ...

متن کامل

Synthesis and apparent turnover of Acid invertase in relation to invertase inhibitor in wounded sweet potato root tissue.

Previously we showed that acid invertase activity increased and then decreased rapidly in wounded sweet potato (Ipomoea batatas Liam.) root tissue, and that the tissue contained a heat-stable, proteinaceous inhibitor with a molecular weight of about 19,500 daltons.In response to wounding of sweet potato root tissue, inhibitor activity decreased during the increase in invertase activity but late...

متن کامل

Sucrose Metabolism in Tubers of Potato (Solanum tuberosum L.): Effects of Sink Removal and Sucrose Flux on Sucrose-Degrading Enzymes.

Excision of developing potato (Solanum tuberosum L.) tubers from the mother plant, followed by storage at 10 degrees C, resulted in a rapid, substantial decrease in sucrose synthase activity and considerable increases in hexose content and acid invertase activity. A comparison of the response of three genotypes, known to accumulate different quantities of hexoses in storage, showed that both su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 168 4  شماره 

صفحات  -

تاریخ انتشار 2015